$$\widehat{ { () } = 0 : Assume NIP . Nood to prove LUBP.
Let X be a nonempty subset of IR and
X be bounded above by K.
Since X is nonempty, we can find some $z \in X$.
Without loss of generality, we may assume $x = o \in X$.
Let $I_0 := [o, k]$.
If \underbrace{k} is an upper bound for I, then define $I_2 := [o, \underbrace{k}]$.
Otherwise, define $I_1 := [\underbrace{k}, k]$.
Continuing this process, we can find a nested sequence
of intervals . $I_{N} := [Can, b_n]$ st. $\forall n \in N$,
 $\bigoplus b_n$ is an upper bound for X.
 $\bigoplus \exists x_n \in X$ st. $x_n \in [a_n, b_n]$.
 $\bigoplus Length of In = (b_n - a_n) = \underbrace{k}{2^n}$.
By NIP(\widehat{o}), $\exists \xi \in R$ st. $\xi \in In \forall n \in N$.
And since infibn-an: $n \in N = 0$,
 $(Theorem 1.5.3)$.
 $then \xi contained in In $\forall n$ is unique.
Exercise: Prove ξ is the supremum of X.$$$

• Application of the supremum Property
Exercise: (Existence of "Ta)
Let a > 0. Show that
$$\forall n \in N$$
, there exists a
unique positive number \times s.t. $x^n = a$.
Proof: (Existence)
Let S := i stlR: s>0. sⁿ
i $0 \text{ S} \neq \emptyset$ since $0 \in S$.
 $0 \text{ S} \neq \emptyset$ since $0 \in S$.
 $0 \text{ S} \neq \emptyset$ since $0 \in S$.
 $0 \text{ S} = if \text{ solve by } if a$.
 $(\text{Since if solve, then S^n > (If e)^n > If an > a.)}$
By Supremum property, S has a supremum.
Let a := sup S > 0.
If we can show $x^n = a$, then of course $x > 0$.
Hence we want rule out two bad coses
 $x^n > a$ and $a^n < q$.

We will use this elementary inequality: if
$$0 \le a \le b$$
,
then
 $b^n - a^n = (b-a)(b^{n+1}+b^{n+2}+a^{n+1}) \le (b-a)\cdot n b^{n+1}$.

Want:
$$(a-\frac{1}{m})^n > a$$
 for some (arge m.
Then $z-\frac{1}{m}$ is also an upper bound for S
Contradicting to the fact that $z = \sup S$.

Note that

$$\chi^{n} - (\chi - \frac{1}{m})^{n} \in \frac{1}{m} n \chi^{n-1}$$

By Archimedean Property,
$$\exists m \in \mathbb{N}$$
 sit.
$$\frac{1}{m} < \frac{n^n - q}{n n^{n+1}} < X . \quad (x^n > q)$$

Hence, we have

$$X - \frac{1}{m} > 0$$
 and $(1 - \frac{1}{m})^n > a$.

If
$$t > x - \frac{1}{m}$$
, then $t^n > (x - \frac{1}{m})^n > a^n$.

Hence t & S. Thus 2-1 is an upper bound for S.

Case 2: Suppose
$$x^n < a$$
.
Wont: $(a+\frac{1}{m})^n < a$ for some large m .
Then $x+\frac{1}{m} \in S$.
Contradicting to the fact that $z = \sup S$.
Note that
(x) $(x+\frac{1}{m})^n - x^n \leq \frac{1}{m} \cdot n (x+\frac{1}{m})^{n-1} \leq \frac{n}{m} (x+1)^{n-1}$
By Archimedean Property,
 $\exists m \in N \quad s+. \quad \frac{1}{m} < \frac{a - x^n}{n (x+1)^{n+1}} \quad (x^n < a)$
Hence, $0 \leq x < x+\frac{1}{m}$ and $(x+\frac{1}{m})^n < a$.